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far fewer number of points than an unadapted grid with
similar resolution at the desired locations. This
important feature of grid adaptation results in a
substantial savings in the amount of computational time
and memory requirement.

In general, most adaptive methods fall into three
broad categories: 1) grid movement (r−refinement), 2)
grid enrichment (h−refinement), and 3) local solution
enhancement (p−refinement). While the methods in the
first two classes modify local grid clustering in order to
improve the solution accuracy (grid adaptation), those
under the third category enhance the order of numerical
approximation at locations where the solution
undergoes abrupt variations (solution adaptation). Most
adaptive techniques used in the CFD applications fall
into the first two classes. In the present work, several
grid adaptation methods are employed in order to
exploit their advantages collectively. A brief discussion
of these techniques are presented here as follows.

In the grid movement approach, nodes are
redistributed and moved towards regions where higher
degree of accuracy is needed. Since the grid topology
remains unchanged throughout the grid adaptation, the
process of grid movement can be simply incorporated
into the solver in a modular fashion. Also, no data
transfer (e.g., interpolation) is required since the grid
structure remains intact during the process, and thus no
solution accuracy is lost from one adaptation cycle to
the next. The method is especially advantageous for the
transient problems involving moving surfaces.
However, since the number of grid nodes remains
constant, transferring nodes from one part of the grid to
another may cause local "depletion" of grid elements,
and thus severe distortion of the grid may be
introduced.1 Adaptation by grid movement has mainly
been applied to structured grids and also 2D triangular
meshes. In this work, grid movement is employed for
the geometric adaptation of grids only.

In the grid enrichment technique, more nodes are
added to regions where higher accuracy of the solution
is desired. Nodes can also be removed from locations
where the solution is smooth and requires less grid
resolution. Due to node addition (deletion), the
topology (connectivity) of the grid changes from one
adaptation cycle to another. As a result, some type of
data transfer among the consecutive grids is required.
Adaptive methods by grid enrichment are particularly
attractive for their flexibility, especially when applied in
conjunction with unstructured grids.

Among the adaptive grid methods by enrichment,
two techniques are notable: grid subdivision and grid

Abstract

An unstructured grid adaptation technique has been
developed and successfully applied to several three
dimensional inviscid flow test cases. The approach is
based on a combination of grid subdivision, local
remeshing, and grid movement. For solution adaptive
grids, the surface triangulation is locally refined by grid
subdivision, and the tetrahedral grid in the field is
partially remeshed at locations of dominant flow features.
A grid redistribution strategy is employed for geometric
adaptation of volume grids to moving or deforming
surfaces. The method is automatic and fast and is
designed for modular coupling with different solvers.
Several steady state test cases with different inviscid flow
features were tested for grid/solution adaptation. In all
cases, the dominant flow features, such as shocks and
vortices, were accurately and efficiently predicted with
the present approach. A new and robust method of
moving tetrahedral "viscous" grids is also presented and
demonstrated on a three−dimensional example.

Introduction

Generation of good quality computational grids on
complex geometries remains a difficult task (or even a
limiting factor) for the routine and timely application of
Computational Fluid Dynamics (CFD). In addition,
generation of an efficient grid usually requires some prior
knowledge of the flow behavior in order to match the grid
resolution to the essential features of the flowfield. While
such information may not be always available in advance,
a number of "trial−and−error" iterations between the
solution and grid generation are often required to tailor
the grid to the specifications of the problem at hand.
Alternatively, an overly fine grid is usually generated to
guarantee the desired solution accuracy. In both cases,
the amount of time, effort, and computational resources
may become excessive.

The solution adaptive grid technology is a powerful
tool in CFD which alleviates some of the complexities
associated with the generation of high quality grids.
Although grid adaptation does not address the crucial and
time−consuming issues of geometry set up, domain
decomposition (for structured grids), etc., they automate
the process of adjusting the grid resolution to the flow
and the geometric characteristics of the problem. Since
the distribution of grid points is efficiently determined by
the adaptation process, the final adapted grid contains a
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remeshing can be easily applied to unstructured grids
due to their inherent flexibility; methods based on grid
movement are ideal for transient problems involving
moving bodies, etc. Therefore, it is beneficial to exploit
the advantages of several techniques in a hybrid
adaptive grid method for solving complex problems.1

In this work, an attempt has been made to combine the
efficiency of h−refinement, the flexibility of remeshing,
and the convenience of grid movement for resolving
different aspects of the grid adaptation problem.

Approach

The proposed grid adaptation strategy is
summarized in the flow chart shown in Fig. 1. Two
distinct approaches are taken in the present method: 1)
solution adaptive grid refinement, which is presented on
the right hand side of the flow chart, and 2) grid
adaptation to moving geometries, shown on the left.
The method employs a local remeshing technique to
refine (coarsen) unstructured tetrahedral "Euler" grids
for adaptation to the flow. The surface triangulation is
partially "h−refined" as part of the local remeshing. A
mesh movement strategy is used to perturb "viscous"
and/or "Euler" tetrahedral grids for adaptation to
deforming or moving surfaces.

There are two main components in any adaptation
technique. First, a strategy is employed to determine
where in the field the grid (solution) needs to be
modified, e.g., by means of error estimation or flow
feature detection. Secondly, a mechanism is used to
either change the grid density or modify the solution
method. The focus of this paper is mostly on the
alteration of grids as adapted to flows or geometry
perturbations. A brief discussion of error estimation
and flow feature detection follows. Further in−depth
study of the subject is planned for future work.

remeshing. In grid subdivision, new nodes are added to
the edges of the cells identified for refinement, and the
"parent" cells are divided into several smaller cells. The
method is efficient and fast, and once a systematic data
structure is maintained prior to the adaptation cycles, both
refinement and de−refinement can easily be implemented.
Also, the transfer of data from the "parent" to "children"
cells (and vice versa) can be accomplished conveniently.
The grid subdivision methods have been best
demonstrated on Cartesian meshes2 and can also be
readily implemented in triangular grids. However, their
applications to tetrahedral grids involve complex data
structures and possibly grid distortion.3

Global and partial remeshing have also been
successfully employed for adaptive grid refinement.4,5

Two significant advantages of these methods are: 1)
flexibility for refinement and unlimited coarsening (in
subdivision methods, for example, grids cannot be
de−refined beyond the initial grid resolutions) and 2)
good quality grids generated in each refinement cycle.
Since several grids are generated during the adaptation
process, the grid generation time and the cost of solution
interpolations are extensive in these methods, especially
in the global remeshing. Also, methods by global
remeshing lack the desired degree of automation as the
processes of grid generation and flow solution remain
uncoupled.

As there is no single grid type (e.g., structured,
unstructured, etc.) or generation method suitable for all
classes of computational problems, there neither exists an
individual adaptive method which can be universally
applied to a wide variety of problems. Different methods
offer certain advantages to different classes of grids and
problems.2−5 For example, methods employing
h−refinement are well suited for Cartesian and 2D
triangular grids; mesh refinement based on local
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Figure 1. Flow chart of the proposed grid adaptation strategy by local remeshing, grid subdivision, and grid movement.
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Error Estimation and FeatureDetection

In most grid adaptation techniques, the question of
where to modify the grid or the solution accuracy in a
computational domain is directly or indirectly addressed
through the concept of error equidistribution. This
principle states that nodes should be clustered in a grid in
such a way that the computational error is uniformly
distributed throughout the grid elements. In other words,
the grid should be denser where the solution incurs larger
error, e.g., where the flow undergoes rapid changes, and
vice versa. The principle of error equidistribution is
strictly applied in methods by r−refinement (and to some
degree in global remeshing techniques) to optimally
redistribute grid points in the field. The magnitude of the
computed errors directly determines the grid spacings in
these methods.

In the methods based on h−refinement, however, an
error estimation only serves as a means to locate large
computational errors. A separate mechanism then
modifies the distribution of grid nodes at these locations
without considering the magnitude of the estimated errors.
Unlike the r−refinement which aims for a converged grid
with equal error at each node, the h−refinement fulfills the
objective of reducing the maximum error through several
preset steps without considering the error equidistribution
criterion at each adaptation cycle. The role of error
estimation in these methods practically reduces to the
detection of flow features rather than accurate indication
of errors. Therefore, the concept of error estimation
appears to be less critical for h−refinement as it does not
influence the grid characteristics directly.6

Most error (feature) indicators in use are based on
some physical flow quantities such as density, pressure,
entropy, etc. Functions of the first or second gradient of
these quantities are usually used to estimate errors or
detect flow features. For h−refinement, even a crude
indicator such as a simple increment of a flow quantity is
sufficient as long as it correctly detects the desired flow
feature. In this work, the following simple indicator
based on the static pressure difference is used to detect
expansion and shock waves.

ϑ
i
 =  (1 + δ

i
 / δa) |∆p

i
|/ p

i
                   (1)

where pi and ∆pi are the local static pressure and its
increment associated with theith grid element,
respectively,δi is the local grid spacing, andδa is an
average grid spacing. The inclusion of a grid spacing
correction factor (first parenthesis in Eq. 1) results in a
better detection of weak flow discontinuities in larger
grid cells away from the surfaces.

Functions based on flow vorticity or simply entropy
generation in the flow field have been used as indicators
for detecting vortices and adapting grids to vortical
flows. In this work, the following simple measure of
entropy is used to capture vortices.

εi = (γ p
i
 / ρi

γ) −1                             (2)

wherepi is the local static pressure,ρi is the local density,
andγ is the specific heat ratio. The indicators computed
by Equations (1) and (2) are compared with the user’s
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prescribed threshold values at each grid element. If an
indicator is greater than the threshold value, the
corresponding grid element is flagged for refinement.

A challenge in the practical implementation of
adaptive methods for complex problems is the choice of
appropriate indicating functions. While a particular
indicator may work for certain class of flow features, it
may not be as effective in recognizing other flow
phenomena. Usually, a prior knowledge of the flow
characteristics is needed in order to select relevant
functions. Since the information about the flow is
generally not available in advance, an indicator based on
a combination of several flow functions is desirable for
capturing all dominant flow features. Such an indicator
must be "smart" enough to distinguish between the
actual flow variations and the numerical "noise" present
in the solution. Otherwise, the grid may be refined in
wrong locations. A comprehensive study of the
universal flow feature indicators is planned for future
work.

Adaptive Refinement

The inherent irregularity of unstructured grids offers
two important advantages: 1) high degree of flexibility
to handle complex shapes and 2) ease of mesh alteration.
The lack of a regular structure in tetrahedral grids, for
example, results in arbitrary cell groupings which, in
effect, makes every part of a grid independent of the
rest. Consequently, any section of a tetrahedral grid can
be removed and locally remeshed without disturbing the
rest of the grid. Furthermore, the local resolution of a
grid can be arbitrarily changed when the grid is partially
remeshed. This important property makes unstructured
grids particularly suitable for adaptive local refinement.

In this work, an unstructured tetrahedral grid
generation system, VGRIDns, is used to generate initial
grids. The grid generation method is based on the
Advancing−Front7 and Advancing−Layers8 techniques.
The Advancing−Front method is a marching process in
which tetrahedral cells grow on surface triangles (initial
front) and gradually advance in the field. The front,
made of the exposed triangular faces of the tetrahedra,
continuously evolves as new cells are created and added
to the field. The process continues until the entire
domain is filled with tetrahedra. At this point, no
exposed frontal face remains in the field. The grid
characteristics, used during the marching process, is
prescribed through a set of source elements included in
a "transparent" Cartesian background grid.9 The data,
to be used for clustering unstructured grid points, are
smoothly distributed from sources onto the background
grid nodes by solving an elliptic equation.

An important feature of the advancing front
technique, like any other marching method, is that the
solution process can be restarted at any time. Since a
grid segment, once constructed, does not influence the
rest of the mesh yet to be generated, the process can be
stopped and restarted without "carrying" the grid
segment already generated in the previous run(s). The
only data required to restart the generation process are
those defining the current front, excluding information
about the field grid underneath. An efficient grid restart
capability along with a local remeshing technique have
previously been developed and incorporated into the



"transitional" triangles (those between the refined and
unrefined regions) are divided into two or three
triangles, depending on their number of edges exposed
in the voids. The process of local h−refinement is
depicted in Fig. 4 for a portion of a 3D triangular
surface mesh. In this figure, the shaded triangles are
assumed to be covered with tetrahedra. The unshaded
triangles are exposed in a void after a segment of the
volume grid is removed as a result of a discontinuity
present in the flow.

Since the length of a mesh edge on the surface is
cut in half by the h−refinement, the spacing parameters
defined by the background grid are also reduced by

VGRIDns system for grid post−processing.10 In this work,
the existing local remeshing capability is extended for
adaptive grid refinement.

The process of local grid refinement is outlined in the
flowchart shown in Fig. 2 and is demonstrated
schematically for a simple 2D example on a hypothetical
grid in Fig. 3. In this example, a transonic flowfield
around a simple airfoil is assumed. An initial coarse grid
along with the corresponding flow solution are supplied to
the adaptive refinement scheme (Fig. 3a). An appropriate
flow detector, such as that given in Eq. (1), is used to
detect the dominant flow features. For example, a diffused
shock wave and a rapid flow gradient at the leading edge of
the airfoil are assumed in the present example. The grid
elements experiencing large variations in the flow
properties are then identified for removal (Fig. 3b). In the
next step, the flagged elements along with an additional
layer of cells are deleted to create voids (empty pockets) in
the mesh (Fig. 3c). The remaining grid points and cells are
then renumbered, and those faces exposed in the pockets
are grouped to form a new front in the grid. If any portion
of the geometry is exposed in the voids, as shown in the
example, the corresponding surface grid is h−refined, and
the newly inserted nodes are projected onto the geometry
model. The remaining faces on the front (those in the
field) remain unrefined. Next, the resolution of the grid to
be generated in the pockets are readjusted, and the voids
are remeshed by the Advancing−Front method as in a
regular grid generation restart. The newly generated grid
elements are then renumbered and assembled with the rest
of the mesh (Fig. 3d).

In an h−refinement, new grid nodes are added to the
mid−point of the surface line segments (in 2D) and triangle
edges (in 3D). On a surface in 3D space, each interior
triangle is then divided into four smaller triangles. The
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Figure 3.  Adaptive refinement steps by local remeshing: (a) initial grid/solution, (b) flagged cells in regions of rapid
                 rapid flow gradients, (c) flagged cells removed, and (d) locally refined grid showing a smooth transition  
                 from fine to coarse cells.
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further assumed to be in an equilibrium state initially.
Once the geometry along with the boundary nodes are
moved, the disturbed spring system rebounds to a new
equilibrium state which can be modeled by

for all nodesi in the field. In Eq. (3),∆si and∆sj are the
coordinate displacements of nodei and its neighboring
node j, respectively,Ji is the number of neighboring
nodes connected to nodei, lij is the length of the edge
(spring) connecting nodei to nodej, andλij is a spring
stiffness function defined as

λij = λij (Lij , Jis) (4)

whereLij is a parameter proportional to the distance from
spring i−j to the surface andJis is the number of springs
connecting nodei to the surface. The correcting function
given by Eq. (4) equalizes forces exerted on the nodes
directly connecting to the surface regardless of the
number of springs attached. It also distributes stiffness
quantities among springs in such a way that the value is
maximum for the springs attached to the moving surfaces
and gradually diminishes to a constant value as the
distance from the surface increases. The use of spring
stiffness (λij / lij2) in Eq. (3), rather thanlij (as used in
Ref. 11 and some other references in the literature), has
significantly improved the robustness of the method for
problems involving large amounts of movement. Figure

50% for regenerating the volume grid in the voids. The
modified background grid spacing would provide the
required compatibility between the h−refined surface and
locally remeshed volume grids. An average grid spacing
based on the actual size of the interior front faces (those
which are not h−refined) and the modified background
grid parameters is used to generate the first layer of
tetrahedra. The average spacing provides a smooth
transition from the coarse tetrahedra of the original grid to
the fine cells generated in the pockets as indicated in Fig.
3d schematically.

Grid movement

A grid movement strategy is employed in this work to
perturb volume grids adapting to moving and/or
deforming surfaces. Although the method allows
substantial grid perturbations, it is not designed for
solution adaptation by grid movement (r−refinement).
Two different techniques are employed to redistribute
unstructured grid nodes in the field as a result of surface
motion. While the perturbation of tetrahedral "inviscid"
grids is relatively straightforward and has been
implemented for design and aeroelastic analyses in the
past, moving thin layered unstructured "viscous" grids is
more complicated and requires different strategies than
those used for inviscid grids.

Regular inviscid grids generated with the Advancing
Front method are moved, in the present work, using a
modified version of the "spring" method reported in Ref.
11. In this method, the grid nodes are assumed to be
interconnected with a system of tension springs which is

5

j=1

Σ
Ji λij

lij
2 (∆si − ∆sj) = 0 (3)

American Institute of Aeronautics and Astronautics

Figure 4. Process of surface mesh local h−refinement in 3D: (a) initial coarse  surface grid, (b) footprint of
               flow discontinuity on surface, (c) exposed triangular faces in a void, (d) insertion of new points
               on edges of flagged faces, (e) subdivision of flagged faces, (f) final adapted grid. 
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an irregular manner, the advancing layers distribute
nodes in the boundary layer along a set of predetermined
surface vectors. Layers of thin tetrahedral cells grow on
surface triangles and systematically advance in the
direction of surface vectors.8 When the cell heights,
determined by a prescribed stretching function, become
compatible with the local background grid spacings, or
when two opposing fronts approach each other, the
layers stop growing locally. At the end of the
Advancing−Layers process, the triangular faces exposed
on the outer layers form an initial front for the
Advancing−Front method to fill the rest of the domain
with regular tetrahedra as explained before.

An important element in the Advancing−Layers
method is the computation of surface vectors. It is
crucial that the computed vectors satisfy a "visibility"
criterion in order to prevent cells at sharp corners from
folding and creating negative volume cells. A robust
iterative scheme has been developed earlier (see Ref. 8)
which satisfies the visibility condition for all surface
vectors. The vectors are computed once and are
smoothed with a Laplacian operation before the process
of volume grid generation starts.

To move grid nodes in the boundary layer, the same
algorithm for the computation of surface vectors is
employed in this work. After the geometry as well as
the surface mesh are moved/deformed, a new set of
vectors based on the displaced or deformed surface
geometry is computed. The existing volume grid nodes
in the boundary layer are then redistributed along the
new vectors while preserving the original cell topology.
The remaining grid points outside the boundary layer
(those generated with the Advancing−Front method) are
then moved by the spring method with the viscous
portion of the grid held fixed. With this approach, the
fidelity of highly stretched viscous grids remains intact
as proper displacement of grid nodes in the boundary
layer is guaranteed by the recomputation of surface
vectors.

5 demonstrates the effect of the stiffness correction on a
grid undergoing substantial perturbation. A triangular
mesh around the NACA 0012 airfoil is shown in Fig 5a in
an initial position of zero incidence. The geometry is then
rotated about the mid−chord by 45 degrees clockwise
while the outer boundary is held fixed. With the
conventional spring method, the perturbed grid folds at
the leading and trailing edges creating 30 negative
volume cells as shown in Fig. 5b. The modified method
moves the grid correctly with no negative volume cells
introduced as a result of stiffer springs around the
geometry (see Fig. 5c). In both cases, the grids were
moved in ten steps.

While the spring method is effective to move inviscid
triangular and tetrahedral grids, it often fails when
applied to viscous grids containing highly stretched cells
adjacent to the body. Instead, a different technique is
proposed in this work for moving viscous grids. The new
technique is compatible with the method by which
viscous grids are generated in VGRIDns.

The viscous portion of tetrahedral grids are
generated with VGRIDns using the Advancing Layers
technique which is also a marching method. Unlike the
Advancing Front method which introduces grid nodes in
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(a)

(b)

"negative" cells

"negative" cells

(c)
Figure 5. Moving grid around a NACA 0012 airfoil:

(a) grid in the original position, (b) grid
moved with the conventional method, (c)
grid moved with the modified method.



fine grids as compared with the experimental data at five
different span locations. As expected, there are
insignificant differences between the adapted and the
fine grid results. Although the result of the coarse grid
seems to be in good agreement with the experimental
data at the shock locations, it is well known that inviscid
solutions predict stronger shocks further downstream as
indicated by both the fine and adapted grid curves in
Fig. 7. Addition of viscous effects to inviscid solutions
usually weaken and move shock waves upstream to the
correct locations.

The initial grid and solution, as well as the adaptive
refinements and solutions, were all generated using a
Silicon Graphics Octane workstation with a R10000
Processor in this case. While the mesh for the fine grid
was also generated on the same workstation, the
corresponding flow was computed on a CRAY C90
supercomputer. A converged solution on the fine grid
took about 36,548 CPU seconds on the CRAY C90,
whereas a total of 40,335 CPU seconds of the SGI
workstation were spent to obtain the adapted solutions.
For all cases presented in this paper, the adapted
solutions were started from the freestream condition at
each adaptation cycle. The development of an efficient
unstructured grid interpolator is planned for future work.

Results

Three steady state test cases with different inviscid
flow features were considered in this study: 1) an
ONERA M6 wing at a transonic speed resulting in a "λ"
shock wave on the upper surface of the wing, 2) the
Modular Transonic Vortex Interaction (MTVI) model at a
subsonic speed featuring a strong vortical flow, and 3) an
X−38 forebody configuration at supersonic speed
creating a strong detached "bow" shock in front of the
geometry. A three−dimensional moving viscous grid is
also presented to demonstrate the geometric grid
adaptation using the present directional node
redistribution approach. All inviscid flow solutions,
presented in this paper, were obtained using the upwind,
cell−centered, finite−volume, unstructured grid solver
USM3D.12

ONERA M6 Wing

An ONERA M6 wing configuration has been used to
demonstrate the transonic shock capturing capability of
the present solution adaptive grid method. The flow
condition is at Mach number 0.84 and an incidence of
3.06o.

A coarse grid with a nearly uniform grid distribution
chordwise has been generated which is shown in Fig.
6(a). The grid contains 2,615 boundary nodes, 15,432
total nodes, and 83,356 tetrahedral cells and serves as the
initial grid for adaptation. An inviscid flow computation
on this grid indicates the presence of a "λ" shock wave on
the upper surface of the wing. As expected, the shock
wave is diffused due to the coarseness of the grid. The
surface pressure contours are also illustrated in Fig. 6(a).

Using the grid subdivision and local remeshing
procedure described earlier, three levels of adaptive
refinements were performed for this case. The indicator
given by Eq. (1) was used to detect regions of large flow
variations. In each refinement, cells with 20% or higher
increment of the indicator were deleted and remeshed.
The surface triangles exposed in the opened pockets were
h−refined as described earlier. The final surface grid and
the pressure contours are shown in Fig. 6(b). The
adapted grid has 9,739 boundary nodes, 54,385 total
nodes, and 288,739 tetrahedra. As indicated, the grid is
efficiently refined at the shock locations and the leading
edge of the wing where there is a large pressure gradient
at the suction peak. The effect of grid refinement is
clearly indicated on the surface pressure contours
showing a sharp "λ" shock definition.

To investigate the effect of the present grid adaptation
method on the accuracy of solutions, a uniformly fine
grid with a resolution similar to that of the adaptively
refined grid was generated. The grid contains 40,424
boundary nodes, 394,155 total nodes, and 2,217,001
tetrahedra. The surface grid and the corresponding
pressure contours are shown in Fig. 6(c). A comparison
of this solution with that of the adapted grid reveals that
the differences between the two are negligible, and that
the grid adaptation has produced an almost identical
result with about an order of magnitude smaller grid size.
Figure 7 illustrates several chordwise surfaceCp
distributions for the initial coarse, adapted, and unadapted
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(a)

(b)

(c)

Figure 6. Grids and surface pressure contours on
ONERA M6 wing, M=0.84, α=3.06o: (a)
initial, (b) adapted, and (c) fine unadapted
grids and solutions.

83,356 tetrahedra

288,739 tetrahedra

2,217,001 tetrahedra



Adaptedgrid

Initial grid

Figure 8. Surface triangulations on the twin−tail MTVI
configuration: initial grid (port) and adapted
grid (starboard).

vortex extending beyond the aircraft tail. The final
refined grid correctly predicts a chine vortex breakdown
ahead of the vertical tail as indicated in Fig. 9b. A
similar vortex break down phenomenon on this
geometry has been observed experimentally. Thus, the
initial coarse grid actually yields a misleading solution
which underscores the importance of grid adaptation for
providing adequate grid resolution automatically.

The local refinements of volume grids at the vortex
locations are depicted in Figure 9 at two different stages
of adaptation. The refinement of the initial grid (Fig.
9a), determined by the first solution, indicates a chine

With such a utility, the converged solution of a coarse
grid can be transferred onto the fine grid of the next
adaptive cycle to restart the solution. Interpolation of
data would further reduce the adaptive solution time.

Modular Transonic Vortex Interaction Configuration

To demonstrate the effectiveness of the present
solution adaptive method for predicting vortical flows, a
generic fighter model referred to as the Modular
Transonic Vortex Interaction (MTVI) has been employed.
The geometry features a chine forebody with an included
angle of 30 degrees, sixty−degree cropped delta wings,
partially deflected wing leading−edge flaps, and twin
vertical tails. All edges of the geometry are sharp,
inducing flow separations and vortices which are
independent of viscous effects. Inviscid solutions were
obtained at Mach 0.4 and a 20− degrees angle of attack.

The initial coarse grid contains 31,565 nodes and
163,619 tetrahedra. After three levels of grid adaptation,
the numbers of grid nodes and cells increase to 108,014
and 564,727, respectively. Figure 8 shows the surface
triangulations for the initial coarse grid (port) and after
three cycles of adaptation (starboard). The refinement of
surface grid, as adapted to the dominant flow features, is
clearly indicated.
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Figure 7. Unstructured grid inviscid solutions on ONERA 
M6 wing (M=0.84, α=3.06o).
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Figure 9. Local refinement of the MTVI grid: (a) first
adaptation cycle indicating an unburst chine
vortex, (b) third adaptation cycle showing a
chine vortex breakdown.
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production level (ε) above a threshold value (typically a
small fraction of the maximum entropy produced in the
field) are flagged for removal at each adaptation cycle.
In the present example, a threshold value of 0.01 has
been used.

X−38 ForebodyConfiguration

The last case to demonstrate the solution adaptive
capability of the present method concerns a supersonic
flow creating a detached shock wave in front of a
blunt−nose geometry. The configuration selected for
this purpose is the front portion of an experimental
aerospace vehicle referred to as X−38. The flow
condition is at Mach 2 and zero incidence angle. This
case represents a classic example for which the
generation of an efficient unadapted grid becomes
challenging due to the presence of a conical detached
shock wave extending far into the field. Even with a
prior knowledge of the shock location, it is difficult to
control the concentration of grid points at a curved
surface in a 3D space. Often, the generated grids are
either too coarse away from the geometry, which fail to
capture the discontinuities accurately, or globally too
fine making the computational cost excessive. The
advantages of solution adaptive grid methods become
more tangible for such applications.

In Fig. 13, two separate grid cross−sections (before
and after adaptation) are illustrated. The initial grid
with 87,806 cells, shown on the left−hand side of the
figure, represents a typical unadapted grid which is
adequately resolved around the geometry but is too
coarse in the field. The grid after three levels of
adaptive refinement, shown on the right−hand side of
the figure, includes 840,135 cells. As evident, the
adapted grid is efficiently refined in the field at the 3D
conical shock location. Even a weaker shock in front
of the canopy is automatically detected, and the grid is
refined. Also, note the smooth transition of the grid
spacing from the original coarse sections to the refined
regions where the shock waves are formed. An
unadapted globally fine grid, resolving the shock

Figure 10 compares surface pressure distributions
before and after grid adaptation on the port and starboard
sides of the aircraft, respectively. The pressure
distributions in the field, showing the vortices in a
cross−sectional plane and on the surface, are portrayed in
Fig. 11. As evident, the wing leading−edge vortices
have been sharply captured with grid adaptation
(starboard). Also, the adapted solution indicates a crisper
chine vortex footprint which does not extend as far
downstream as that of the unadapted solution (indicative
of the vortex burst phenomenon). A corresponding
image of the volume grids (before and after adaptation),
as well as the surface grids, are shown in Fig. 12.

To detect vortices, the feature detector given by Eq.
(2) was used in this example. Those cells with an entropy
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Fig. 10. Surface pressure distribution on the MTVI
showing footprints of the wing leading−edge
and chine vortices: initial solution (port) and
adapted solution (starboard).

chine vortex
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Unadapted
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Fig. 12. Surface and field grid distributions on the
twin−tail MTVI showing grid refinement at the
vortex locations: initial grid (port) and adapted
grid (starboard).

Fig. 11. Surface and field pressure distributions on the
MTVI showing the wing leading−edge and chine
vortices: initial solution (port) and adapted
solution (starboard).Ì

Adapted Unadapted
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In the first case of grid movement, the wing is bent
upward simulating deformation due to an aeroelastic
effect as shown in Fig. 15b. The distance by which the
wing tip is moved is comparable to the chord length at
the wing mid−section. As explained earlier, the
volume grid is moved by first recomputing the surface
vectors and redistributing the grid points in the
boundary layer in the direction of vectors. The
inviscid portion of the grid is then moved by the spring
method as described earlier.

Figure 16a illustrates the wing undergoing a
different type of deformation in which segments of
grid move in opposite directions. A close−up view of

Elastic Wing

The moving grid capability is demonstrated on a
viscous grid around a generic wing undergoing
substantial movement and deformation. The grid
contains thin layers of tetrahedral cells generated with
the Advancing Layers method. Figure 15a depicts the
front view of the undisturbed wing which is attached to
a wall. The surface triangles and a cross−section of
the volume grid around the wing are also shown.

locations similarly to the adapted grid, was also
generated for comparison. The fine grid (not shown)
contains 11,786,137 cells.

Equation (1) is used to detect the shock waves in
this case. The effect of the grid spacing correction factor
in Eq. (1) has resulted in a better detection of small
pressure differences away from the geometry.
Consequently, the larger cells which have hardly
experienced flow discontinuities in the initial solution
are flagged and refined, resulting in crisper adapted
shocks extended farther away in the field. Figure 14
shows pressure contours on the surface and in the field
reflected on a cutting plane passing through the
geometry. The solution on the unadapted grid (left−hand
side of Fig. 14) contains a diffused shock wave which
quickly dissipates away from the body. The adapted
solution, on the right, predicts a sharp bow shock
extending farther out to the outflow boundary. A
secondary shock wave in front of the canopy is also well
captured with adaptation, whereas it appears as a weak
compression wave in the unadapted solution.
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Figure 13. Adapted and unadapted tetrahedral grids
on the X−38 forebody configuration.

Unadapted Adapted

Figure 14. Comparison of adapted and unadapted
pressure contours on X−38 forebody
configuration, M=2,α=0.

Unadapted Adapted

Figure 15. Moving viscous grid around a generic
wing: (a) initial grid, (b) perturbed grid.

(a)

(b)

thin−layer
tetrahedra



surface grid points onto the geometry model, solution
interpolation, and extension of the method for solution
adaptive refinement of viscous grids.
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the wing/grid at the mid−section, where a large amount
of movement occurs, is shown in Fig. 16b. As evident,
the viscous layers along with the outer portion of the
grid are adapted to the deformed surface properly. The
quality of the grid after movement is checked to
confirm that no grid anomaly such as negative volume
cells were introduced as a result of grid movement.

Concluding Remarks

An adaptive unstructured grid approach is developed
and tested on several three−dimensional cases. The
method, based on a surface grid subdivision, volume grid
local remeshing, and grid movement, has demonstrated
promising potential for solution adaptive refinement and
movement of unstructured grids around complex
configurations. While the objective of this paper is to
demonstrate the "pilot" technology, further work is
required to fully automate the method and extend its
capabilities for realistic, complex problems. Among
further developments planned for future work are:
implementation of better error/feature indicators for
accurate adaptation of solutions involving multiple
dominant flow features, automatic projection of new
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Figure 16. Moving viscous grid around a deforming
wing: (a) farfield, (a) close−up view
showing viscous layers .
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